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Note 

The Reliability of Calculations with 
the RSF Algorithm*’ 

In the preceeding paper [ 11, Eastwood and Hopcraft investigate the numerical 
stability properties of the intial-value scheme used in our RSF code [2]. They 
present approximate von Neumann stability analyses and comment on the 
implications of this for the efficiency and correctness of RSF results. Their analysis 
relates numerical instabilities to physical conditions such as the magnitude and 
orientation of flow velocity. Such approximate numerical stability analyses do not, 
however, provide conclusive and general stability rules particularly for a nonlinear 
scheme. The numerical stability analysis is based on the linear part of the numerical 
scheme. For the usual physics applications the time evolution is dominated by the 
nonlinear terms. Consequently, our approach is to take a more empirical point of 
view. An adaptive timestep control routine analyzes certain amplitudes for very 
short wavelength components. When these are observed to grow, the timestep is 
automatically reduced. This, in practice, avoids all but the fastest growing 
numerical instabilities. This approach has the additional virtue of arriving at a 
timestep which is near the maximum feasible value, thus providing the greatest 
efficiency for this scheme. 

In spite of the success of this adaptive timestep algorithm, it is essential to verify 
the numerical stability of results obtained. We primarily use two techniques to 
accomplish this. We compare the results of up to four different numerical schemes. 
Numerically unstable results from different schemes would differ, so this provides a 
test for stability. For example, RSF results have been compared to the results 
obtained with a scheme [3] in which all of the linear terms are treated implicity 
and which therefore has no stability restriction on the time step in the linear regime. 
The other type of test is to rerun a calculation with the same scheme but with a dif- 
ferent timestep. Since the growth of a numerical instability depends on the timestep, 
results which are independent of the timestep do not contain significant numerically 
unstable components. Such convergence studies have shown that the adaptive 
timestep scheme is very successful at avoiding numerical instabilities. These tests 
have been applied systematically in all the physics applications we have made, thus 
excluding any contamination of results due to numerical instabilities. When the 
timestep is not adaptively reduced, a numerical instability having an enormous 
growth rate appears. 
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The results of an extensive program of numerical tests of the RSF algorithm were 
reported in [4]. Both 2D and 3D nonlinear tearing mode calculations were con- 
sidered. [4] addresses some questions raised earlier by Eastwood and Hop- 
craft [S], but goes on to consider each potential source of numerical error: 
numerical stability, roundoff, and several sources of truncation error. The con- 
clusions are that the potential sources of numerical error in RSF are well 
understood and that the published RSF results are numerically stable and con- 
verged. In addition, we considered [3] the relative computational efficiency, under 
a variety of physical situations, of RSF and a scheme in which all of the linear 
terms are implicit. 

While we agree with many of the conclusions of [l], we also have some 
significantly different interpretations. The claim that physical processes may become 
confused with numerical effects is only true if care is not taken to verify the 
numerical stability by appropriate methods. Since we and other researchers in this 
field have routinely done this, this argument does not apply. Figure 2a of [l] 
illustrates that numerically contaminated solutions can be obtained, but as Fig. 2c 
shows, such a problem can be easily detected. Use of the overall energy conser- 
vation as a check of validity is proposed in [ 1 ] and, more strongly, in [S]. We 
have shown [4] that this is a dangerously misleading diagnostic unless interpreted 
with great care. In [2] we indicated an appropriate initial timestep size. This is 
Eq. (16) of [ 11. We have never claimed that this timestep is a sufficient condition, 
which is why we have employed the adaptive timestep control described above. In 
the S + CC limit, the RSF equations become singular and thus the stability of the 
scheme in this limit is a moot point. 

The strict requirement that the amplification factor L not lie outside the unit cir- 
cle is overly conservative, especially when the equations are not elliptical and when 
they admit growing physical solutions. A magnitude of 1, slightly greater than unity 
corresponds to a slowly growing numerical instability. It is only necessary that its 
amplitude remain small with respect to the physical solution (as is accomplished by 
the adaptive timestep algorithm). In any case it is pointless to develop very 
sophisticated numerical stability criteria for the linear equation, because the real 
limitation on the timestep arises from the nonlinear terms. 

We concur with [l] on numerous points, including the desirability of a better 
understanding of these numerical schemes with the goal of improved domains of 
numerical stability. We agree that schemes exist which in certain situations are 
computationally more efficient than RSF. In fact, we have developed and used such 
schemes [3,4] since the time that the RSF algorithm was first developed in 1978. 
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